
1FY2005 S/W and CEH Standardization Conference rk

Rich Katz, Grunt Engineer
NASA Office of Logic Design

This Is What We Find In This Stuff:
A Designer Engineer’s View

FY2005 Software/Complex Electronic
Hardware Standardization Conference

Norfolk, Virginia
July 26-28, 2005

2FY2005 S/W and CEH Standardization Conference rk

DO-254: Introduction

The use of increasingly complex electronic hardware for more of the
safety critical aircraft functions generates new safety and certification
challenges. These challenges arise from a concern that said aircraft
functions may be increasingly vulnerable to the adverse effects of
hardware design errors that may be increasingly difficult to manage due
to the increasing complexity of the hardware.

To counteract this perceived escalation of risk it has become necessary to
ensure that the potential for hardware design errors is addressed in a
more consistent and verifiable manner during both the design and
certification processes.

DESIGN ASSURANCE GUIDANCE
FOR AIRBORNE ELECTRONIC HARDWARE

3FY2005 S/W and CEH Standardization Conference rk

An Example or Two to Get
Things Started

CAE Tools and Logic Design:
Synchronization Circuits

4FY2005 S/W and CEH Standardization Conference rk

Intended Circuit
Synchronizer with Leading Edge Detect

TED_OUT

LED_OUT

data_out

R
QD

in_between

R
QD

wr_valid_ted

wr_valid_led

wr_valid_tween_1

reset_int

clk_buf

5FY2005 S/W and CEH Standardization Conference rk

VHDL Code
entity EDGE_DETECT_SYNC is

generic (
RESET_LEVEL : STD_LOGIC := '1');

port (
CLK : in STD_LOGIC;
RESET : in STD_LOGIC;
INPUT : in STD_LOGIC;
LED_OUT : out STD_LOGIC;
TED_OUT : out STD_LOGIC

);
end EDGE_DETECT_SYNC;

architecture BEHAVIORAL of EDGE_DETECT_SYNC
is

signal IN_BETWEEN : STD_LOGIC;
signal DATA_OUT : STD_LOGIC;

begin

FF1 : process(RESET, CLK)
begin

if (RESET = RESET_LEVEL) then
IN_BETWEEN <= '0';

elsif rising_edge(CLK) then
IN_BETWEEN <= INPUT;

end if;
end process;

FF2 : process(RESET, CLK)
begin

if (RESET = RESET_LEVEL) then
DATA_OUT <= '0';

elsif rising_edge(CLK) then
DATA_OUT <= IN_BETWEEN;

end if;
end process;

LED_OUT <= (not DATA_OUT) and IN_BETWEEN;
TED_OUT <= DATA_OUT and (not IN_BETWEEN);

end BEHAVIORAL;

6FY2005 S/W and CEH Standardization Conference rk

Synthesized Circuit

WRITE_VALID_EDGE_DET.in_between.q

R
QDWR_VALID_pad\[0\].y

[0][0]

WR_VALID_pad\[1\].y

[1][1]

WR_VALID_pad\[2\].y

[2][2]

WR_VALID_pad\[3\].y

[3][3]

WRITE_VALID_EDGE_DET.in_between_0.q

R
QD

GetWriteValid_un1_wr_valid.y

[1]
[0]
[2]
[3]

WR_VALID[3:0] [3:0]

Not pleasant to read.

7FY2005 S/W and CEH Standardization Conference rk

Synthesized Circuit

Original

“Optimized”

The designer used this point to
synchronize signals and drive a
motor. The short circuit was “bad.”

Back end tools also have been caught replicating
flip-flops in synchronizer circuits.

James E. Webb, NASA Administrator
BA Education, Lawyer

Dr. Wernher von Braun
Director Marshall Space Flight Center

Ph.D. Aerospace Engineering

9FY2005 S/W and CEH Standardization Conference rk

Basic Digital Logic and
Programmable Devices

10FY2005 S/W and CEH Standardization Conference rk

Basic Digital Operations
A Y

0 1

1 0

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

Not AND OR
' · +
There are 24 = 16 functions of two binary variables.

11FY2005 S/W and CEH Standardization Conference rk

Logic Functions
• Any logic function can be implemented

with AND, OR, and NOT.
• One standard form is the sum of products

• Example: Y = (A • B + C • D)′

Inputs AND gates OR gates Inverters Outputs

12FY2005 S/W and CEH Standardization Conference rk

Universal Logic Gate
NOR Function

• NOR ::= Negative OR
Y = (A + B)´

NOT

OR

AND

Can perform similar operation with NAND gate.

13FY2005 S/W and CEH Standardization Conference rk

Universal Logic Gate

Multiplexor: Y = A • S + B • S´

NOT OR AND

14FY2005 S/W and CEH Standardization Conference rk

Universal Logic Gate
Look up table (LUT)

• Look up table (LUT)
Small memory

NOT OR AND

A X Y A B Y A B Y
0 0 1 0 0 0 0 0 0
0 1 1 0 1 1 0 1 0
1 0 0 1 0 1 1 0 0
1 1 0 1 1 1 1 1 1

A Practical Example of the Universal Logic Element

17FY2005 S/W and CEH Standardization Conference rk

What Is A Gate Array?

18FY2005 S/W and CEH Standardization Conference rk

What Is An Antifuse-Based FPGA?
Antifuse-FPGA Architecture

In some FPGAs, the routing
resources and antifuses are
above the logic modules in a
sea-of-modules architecture.
This is enabled by the metal-
to-metal antifuse.

Antifuse resistance ranges
from 200 to 500 Ω for ONO
technology and about 25 Ω
for metal-to-metal types.

FOX
N++

Polysilicon
ONO

19FY2005 S/W and CEH Standardization Conference rk

What Is An Antifuse-Based FPGA?
Antifuse-FPGA Architecture

Modules

Unprogrammed
Antifuse

Modules

Vertical Track
Horizontal

Track

Programmed
Antifuse

20FY2005 S/W and CEH Standardization Conference rk

SRAM Switch Technology

Read or Write
Data

Configuration Memory Cell

Routing Connections

> 107 configuration memory cells per device

21FY2005 S/W and CEH Standardization Conference rk

Virtex II XC2V1000 SEU Data
Configuration Bits

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

0 10 20 30 40 50 60 70

Effective LET (MeVcm2/mg)

 C
ro

ss
 S

ec
tio

n
(c

m
2 /b

it)

CFG Bits
Fit

 σsat = 4.50 e-8 cm
2

/bit

 L1/e = 9 MeVcm
2

/mg

22FY2005 S/W and CEH Standardization Conference rk

Galactic Cosmic Rays:
Integral LET Spectra

CREME 96, Solar Minimum, 100 mils (2.54 mm) Al

LE
T

Fl
ue

nc
e

(#
/c

m
2 /

da
y)

1 0 -1 1 0 0 1 0 1 1 0 21 0 -8
1 0 -7
1 0 -6
1 0 -5
1 0 -4
1 0 -3
1 0 -2
1 0 -1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4

G E O
G T O
M E O
E O S
L E O

Z = 2 - 92

LET (MeV-cm2/mg)

23FY2005 S/W and CEH Standardization Conference rk

Virtex II 2V6000 SEU Data
Atmospheric Neutrons

San Jose 443 10632 6 1.06E+06 1.96E+09 14.40 153,101 2.00E-14
ABQ 564 13536 34 1.35E+06 1.96E+09 53.28 721,198 2.41E-14
WM 229 5496 66 5.50E+05 1.96E+09 338.40 1,859,846 1.81E-14
MK 90 2160 18 2.16E+05 1.96E+09 229.57 495,880 1.85E-14

Average Cross-Section 2.02E-14
LANSCE 2V6000 3.05E-14

Rosetta Factor 1.51

Location Days Hours Upsets
>10MeV Cross-

SectionDevice Hours Bits
>10MeV Flux

(n/cm2-hr) >10MeV Fluence

Test operating at 4 altitudes
• Sea Level – San Jose
• 5,200 feet – Albuquerque
• 12,000 feet – White Mountain Research
Center
• 13,500 feet – Mauna Kea Observatory

24FY2005 S/W and CEH Standardization Conference rk

Module Design of

PALs and FPGAs

25FY2005 S/W and CEH Standardization Conference rk

Programmable Logic Components

AND
Plane

OR
Plane

In
pu

ts
 +

 B
uf

fe
rs

/I
nv

er
te

rs

In
ve

rt
er

s +
 O

ut
pu

ts

Fl
ip

-F
lo

ps
 (o

pt
io

na
l)

PROMs, PALs, and PLAs all have a similar architecture

26FY2005 S/W and CEH Standardization Conference rk

PAL Architecture

Programmable
AND plane and
fixed OR plane.

PALs have a built-in
POR circuit to
initialize all registers
to zero.

27FY2005 S/W and CEH Standardization Conference rk

Act 2 Logic Modules

8-Input Combinational function

766 possible combinational
macros1

1”Antifuse Field Programmable Gate Arrays,” J. Greene, E. Hamdy, and S. Beal,
Proceedings of the IEEE, Vol. 91, No. 7, July 1993, pp. 1042-1056

Hard-wired Flip-flop

28FY2005 S/W and CEH Standardization Conference rk

XC4000 Series CLB
Simplified CLB - Carry Logic Not Shown

RAM LUTs
for Logic or
small SRAM Two Flip-flops

29FY2005 S/W and CEH Standardization Conference rk

Five Generations of Actel Space Flight FPGAs

Model A1020 A1280A A14100A RTSX32 RTSX72S

Foundry

Feature Size

Supply
Voltages

Gate Density

Antifuse Type

Die Size .363” x .387” .416” x .433” .533” x .437” .428” x .412” .430” x .675”

MEC MEC MEC MEC MEC

2.0 µm 1.0 µm 0.8 µm 0.6 µm 0.25 µm

5.0V 5.0V 5.0V 5.0V/3.3V 5.0V/2.5V

1x 2x 5x 8x 18x

ONO ONO ONO M2M M2M

SEU-Hardened

Notes:
• Largest device in each family shown
• RH parts available: RH1020, RH1280; TID hardened only
• Gate counts approximate

30FY2005 S/W and CEH Standardization Conference rk

Some Definitions

DESIGN ASSURANCE GUIDANCE
FOR AIRBORNE ELECTRONIC HARDWARE

RTCA/DO-254
April 19, 2000
SC-180

31FY2005 S/W and CEH Standardization Conference rk

Definitions
Programmable Logic Device (PLD) - A component that is purchased as
an electronic component and altered to perform an application specific
function. PLDs include, but are not limited to, Programmable Array
Logic components, Programmable Logic Array components, General
Array Logic components, Field Programmable Gate Array components
and Erasable Programmable Logic Devices.

Design Tools - Tools whose output is part of hardware design and thus
can introduce errors. For example, an ASIC router or a tool that
creates a board or chip layout based on a schematic or other detailed
requirement.

Design Assurance – All of those planned and systematic actions used to
substantiate, at an adequate level of confidence, that design errors have
been identified and corrected such that the hardware satisfies the
application certification basis.

DESIGN ASSURANCE GUIDANCE FOR AIRBORNE ELECTRONIC HARDWARE, RTCA/DO-254

32FY2005 S/W and CEH Standardization Conference rk

Definitions

Complex Hardware Item - All items that are not simple are considered to
be ‘complex’. See definition of Simple Hardware Item.

Simple Hardware Item - A hardware item is considered simple if a
comprehensive combination of deterministic tests and analyses can ensure
correct functional performance under all foreseeable operating conditions
with no anomalous behavior.

DESIGN ASSURANCE GUIDANCE FOR AIRBORNE ELECTRONIC HARDWARE, RTCA/DO-254

37FY2005 S/W and CEH Standardization Conference rk

Is Hardware Software?

HDL design representations use coded text based techniques that are
similar in appearance to those used for software representations. This
similarity in appearance can mislead one to attempt to use software
verification methods directly on the design representation of HDL or other
equivalent hardware specification languages. The guidance of this
document is applicable for design assurance for designs using an HDL
representation.

DESIGN ASSURANCE GUIDANCE FOR AIRBORNE ELECTRONIC HARDWARE, RTCA/DO-254

⇒ This document covers HDL-based designs
for safety critical aircraft functions

From DO-254

38FY2005 S/W and CEH Standardization Conference rk

Finite State Machine:
Introduction

39FY2005 S/W and CEH Standardization Conference rk

The Null Hypothesis:
Coding in HDLs can often lead to
unreviewable designs, failures, and be
slower, worse, and more expensive
than schematics.

HDL = {VHDL. Verilog. C variant, Other HDL}

The Alternate Hypothesis
You guys are old and obsolete.

40FY2005 S/W and CEH Standardization Conference rk

HDL Rationale

• Can design larger circuits
• Work at a higher level of abstraction
• The synthesizer does all the hard work
• The manufacturers will stop supporting

schematic entry
• It’s the “wave of the future”

41FY2005 S/W and CEH Standardization Conference rk

A Flight VHDL Example (1)
-- signal declarations

--internal
signal rst, cs, ale_n, pulse1_n, pulse2_n, gate, gate_del, int_tx_gate : std_logic;
signal ck8hz, det_start_count, det_stop_count : std_logic;

signal datout : std_logic_vector(7 downto 0);
signal address : std_logic_vector(7 downto 0);
signal dec_addr : std_logic_vector(5 downto 0);
signal p1neg0, p1pos0, p2neg0, p2pos0 : std_logic_vector(19 downto 0);
signal p1neg1, p1pos1, p2neg1, p2pos1 : std_logic_vector(19 downto 0);
signal p1neg2, p1pos2, p2neg2, p2pos2 : std_logic_vector(19 downto 0);
signal p1neg3, p1pos3, p2neg3, p2pos3 : std_logic_vector(19 downto 0);
signal p1neg4, p1pos4, p2neg4, p2pos4 : std_logic_vector(19 downto 0);
signal p1neg5, p1pos5, p2neg5, p2pos5 : std_logic_vector(19 downto 0);
signal p1neg6, p1pos6, p2neg6, p2pos6 : std_logic_vector(19 downto 0);
signal p1neg7, p1pos7, p2neg7, p2pos7 : std_logic_vector(19 downto 0);
signal p1neg8, p1pos8, p2neg8, p2pos8 : std_logic_vector(19 downto 0);
signal p1neg9, p1pos9, p2neg9, p2pos9 : std_logic_vector(19 downto 0);
signal p1neg_tx, p1pos_tx : std_logic_vector(19 downto 0);
signal count : std_logic_vector(22 downto 0);
signal latch_count : std_logic_vector(15 downto 0);
signal start_count, stop_count : std_logic_vector(21 downto 0);
signal count_pulses : std_logic_vector(3 downto 0);
signal reset_pulse_counter : std_logic;
signal stop_gate, reset_gate_pulse : std_logic;

constant count_to_8hz: integer := 7812499;

42FY2005 S/W and CEH Standardization Conference rk

A Flight VHDL Example (2)
begin
-- Component instances

power_on_reset : DEMETA
port map(ck => clk62_5mhz,

reset_in => pwronrst(0),
rstout => rst

);
counter_8hz : counter

generic map
(

num_bits => 23,
last_count => count_to_8hz

)
port map(reset => rst,

ck => clk62_5mhz,
enable => '1',
count => count

);

counter_pulses : counter
generic map
(

num_bits => 4,
last_count => 9

)
port map(reset => reset_pulse_counter,

ck => pulse2_n,
enable => '1',
count => count_pulses

);

43FY2005 S/W and CEH Standardization Conference rk

A Flight VHDL Example (3)
ADDRESS_DECODER: decoder

generic map
(

innum_bits => 3,
outnum_bits => 6

)

port map
(din => address(2 downto 0),

enable => cs,
dec_addr => dec_addr

);

ADDRESS_LATCH : reg
generic map
(

num_bits => 8,
reset_value => 255

)
port map(data => ad(7 downto 0),

ck => ale_n,
reset => pwronrst(0),
ena => '1',
q => address

);

44FY2005 S/W and CEH Standardization Conference rk

A Flight VHDL Example (4)
START_GATE_7_0 : reg

generic map
(

num_bits => 8,
reset_value => 255

)
port map(data => ad,

ck => wr_n,
reset => pwronrst(0),
ena => dec_addr(0),
q => start_count(7 downto 0)

);

START_GATE_15_8 : reg
generic map
(

num_bits => 8,
reset_value => 255

)
port map(data => ad,

ck => wr_n,
reset => pwronrst(0),
ena => dec_addr(1),
q => start_count(15 downto 8)

);

START_GATE_21_16 : reg
generic map
(

num_bits => 6,
reset_value => 63

)
port map(data => ad(5 downto 0),

ck => wr_n,
reset => pwronrst(0),
ena => dec_addr(2),
q => start_count(21 downto 16)

);

STOP_GATE_7_0 : reg
generic map
(

num_bits => 8,
reset_value => 250

)
port map(data => ad,

ck => wr_n,
reset => pwronrst(0),
ena => dec_addr(3),
q => stop_count(7 downto 0)

);

Yes, there are 16 pages of structural VHDL -- they were

deleted for this presentat on. This design was rejected

and not flown.

i

45FY2005 S/W and CEH Standardization Conference rk

“Computer Science World
Mourning the Loss of Two of Its

Trailblazers”

Dijkstra opposed the GOTO statement and worked to
abolish it from programming. In a March 1968 letter to
the editor of Communications of the ACM, he
contended that the more GOTO statements there
are in a program, the harder it is to follow the
source code. The letter is acknowledged to have
initiated the movement to produce reliable software by
developing structured programs.

EE Times, August 26, 2002, p. 20

46FY2005 S/W and CEH Standardization Conference rk

Think …

• What is the difference between a GOTO
statement and structural VHDL?

• Why has the GOTO statement been
considered EVIL by Computer Scientists
for 40 years but is now present and prevalent
in HDL-based hardware designs?

47FY2005 S/W and CEH Standardization Conference rk

Finite State Machine Analysis

48FY2005 S/W and CEH Standardization Conference rk

Ex: Master Sequencer, Schematic

49FY2005 S/W and CEH Standardization Conference rk

Master Sequencer Example
VHDL Implementation1

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--
--
--
entity SEQUENCER is

port(RST_N, C5MHZ, SIM_CLR_N : in std_logic;
THZ : in std_logic_vector(22 downto 0);
TEST_SEQ : in std_logic;
RATE_SEL : in std_logic_vector(1 downto 0);
OPEN_VALUE,CLOSE_VALUE : in std_logic_vector(22 downto 0);
GATE : out std_logic;
EQUALS : out std_logic;
TIME_NOW, GRAYTIME : out std_logic_vector(22 downto 0)

);
end SEQUENCER;

architecture RTL_ARCH of SEQUENCER is
constant R1HZ : std_logic_vector (22 downto 0) := std_logic_vector(to_unsigned(5000000,23));
constant R6HZ : std_logic_vector (22 downto 0) := std_logic_vector(to_unsigned(833333,23));
constant R8HZ : std_logic_vector (22 downto 0) := std_logic_vector(to_unsigned(625000,23));
constant R10HZ : std_logic_vector (22 downto 0) := std_logic_vector(to_unsigned(500000,23));
component COUNT23

port(RST_N,SYNC_CLR, CLOCK : in std_logic;
Q : out std_logic_vector(22 downto 0)) ;

end component;
component MUX_23_4

port(A, B, C, D, T : in std_logic_vector(22 downto 0);
T_SEL, S1, S0 : in std_logic;
Y : out std_logic_vector(22 downto 0)

);
end component;
component COMP23

port(DATAA, DATAB : in std_logic_vector(22 downto 0);
AEB : out std_logic

);
end component;
component GATE_RANGE

port(RST_N, CLOCK : in std_logic;
OPEN_VALUE,CLOSE_VALUE, TIME_NOW : in std_logic_vector(22 downto 0);
GATE : out std_logic

);
end component;
component BIN2GRAY23

port(A : in std_logic_vector (22 downto 0);
Y : out std_logic_vector (22 downto 0)
);

end component;

signal Y : std_logic_vector (22 downto 0);
signal EQUALS_internal : std_logic;
signal TIME_NOW_internal : std_logic_vector(22 downto 0);

begin
MA1: COUNT23 port map

(RST_N => SIM_CLR_N, SYNC_CLR => EQUALS_internal, CLOCK => C5MHZ,
Q => TIME_NOW_internal
);

MA3: MUX_23_4 port map
(A => R1HZ, B => R6HZ, C => R8HZ, D => R10HZ, T => THZ,
T_SEL => TEST_SEQ, S1 => RATE_SEL(1), S0 => RATE_SEL(0),
Y => Y
);

MA2: COMP23 port map
(DATAA => TIME_NOW_internal, DATAB=> Y,
AEB => EQUALS_internal
);

MA7: GATE_RANGE port map
(RST_N => RST_N,
CLOCK => C5MHZ,
OPEN_VALUE => OPEN_VALUE,CLOSE_VALUE => CLOSE_VALUE, TIME_NOW => TIME_NOW_internal,
GATE => GATE
);

MA8: BIN2GRAY23 port map
(A => TIME_NOW_internal,
Y => GRAYTIME
);

EQUALS <= EQUALS_internal;
TIME_NOW <= TIME_NOW_internal;
end RTL_ARCH;

Broken down into sections and
enlarged on the following
pages.

1 Design courtesy of an HDL
design proponent.

Header (e.g., symbol), constants,
and various definitions deleted
from this abridged version for
brevity.

50FY2005 S/W and CEH Standardization Conference rk

Master Sequencer Example
VHDL Implementation: Draw Nets

MA1: COUNT23 port map
(RST_N => SIM_CLR_N, SYNC_CLR => EQUALS_internal, CLOCK => C5MHZ,
Q => TIME_NOW_internal

);
MA3: MUX_23_4 port map

(A => R1HZ, B => R6HZ, C => R8HZ, D => R10HZ, T => THZ,
T_SEL => TEST_SEQ, S1 => RATE_SEL(1), S0 => RATE_SEL(0),
Y => Y

);
MA2: COMP23 port map

(DATAA => TIME_NOW_internal, DATAB=> Y,
AEB => EQUALS_internal

);
MA7: GATE_RANGE port map

(RST_N => RST_N,
CLOCK => C5MHZ,
OPEN_VALUE => OPEN_VALUE,CLOSE_VALUE => CLOSE_VALUE,
TIME_NOW => TIME_NOW_internal,
GATE => GATE

);
MA8: BIN2GRAY23 port map

(A => TIME_NOW_internal,
Y => GRAYTIME

);

EQUALS <= EQUALS_internal;
TIME_NOW <= TIME_NOW_internal;

end RTL_ARCH;

51FY2005 S/W and CEH Standardization Conference rk

Master Sequencer Example
Schematic Analysis: Inputs and Outputs

52FY2005 S/W and CEH Standardization Conference rk

Master Sequencer Example
Schematic Analysis: Connectivity

This analysis is trivial;
simply follow the lines on
the schematic.

53FY2005 S/W and CEH Standardization Conference rk

Master Sequencer Example
Symbol Analysis: Inputs and Outputs

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--
--
--
entity SEQUENCER is

port(RST_N, C5MHZ, SIM_CLR_N : in std_logic;
THZ : in std_logic_vector(22 downto 0);
TEST_SEQ : in std_logic;
RATE_SEL : in std_logic_vector(1 downto 0);
OPEN_VALUE,CLOSE_VALUE : in std_logic_vector(22 downto 0);
GATE : out std_logic;
EQUALS : out std_logic;
TIME_NOW, GRAYTIME : out std_logic_vector(22 downto 0)

);
end SEQUENCER;

In designing this slide I put
the colored boxes in the
wrong spot. An error-prone
methodology!

54FY2005 S/W and CEH Standardization Conference rk

Master Sequencer Example
VHDL Analysis: Inputs and Outputs

MA1: COUNT23 port map
(RST_N => SIM_CLR_N, SYNC_CLR => EQUALS_internal, CLOCK => C5MHZ,
Q => TIME_NOW_internal

);
MA3: MUX_23_4 port map

(A => R1HZ, B => R6HZ, C => R8HZ, D => R10HZ, T => THZ,
T_SEL => TEST_SEQ, S1 => RATE_SEL(1), S0 => RATE_SEL(0),
Y => Y

);
MA2: COMP23 port map

(DATAA => TIME_NOW_internal, DATAB=> Y,
AEB => EQUALS_internal

);
MA7: GATE_RANGE port map

(RST_N => RST_N,
CLOCK => C5MHZ,
OPEN_VALUE => OPEN_VALUE,CLOSE_VALUE => CLOSE_VALUE,
TIME_NOW => TIME_NOW_internal,
GATE => GATE

);
MA8: BIN2GRAY23 port map

(A => TIME_NOW_internal,
Y => GRAYTIME

);

EQUALS <= EQUALS_internal;
TIME_NOW <= TIME_NOW_internal;

end RTL_ARCH;

Note: Had to print out the
entity just to make this
slide.

Inputs
Outputs

55FY2005 S/W and CEH Standardization Conference rk

Master Sequencer Example
VHDL Analysis: Connectivity

MA1: COUNT23 port map
(RST_N => SIM_CLR_N, SYNC_CLR => EQUALS_internal, CLOCK => C5MHZ,
Q => TIME_NOW_internal

);
MA3: MUX_23_4 port map

(A => R1HZ, B => R6HZ, C => R8HZ, D => R10HZ, T => THZ,
T_SEL => TEST_SEQ, S1 => RATE_SEL(1), S0 => RATE_SEL(0),
Y => Y

);
MA2: COMP23 port map

(DATAA => TIME_NOW_internal, DATAB=> Y,
AEB => EQUALS_internal

);
MA7: GATE_RANGE port map

(RST_N => RST_N,
CLOCK => C5MHZ,
OPEN_VALUE => OPEN_VALUE,CLOSE_VALUE => CLOSE_VALUE,
TIME_NOW => TIME_NOW_internal,
GATE => GATE

);
MA8: BIN2GRAY23 port map

(A => TIME_NOW_internal,
Y => GRAYTIME

);

EQUALS <= EQUALS_internal;
TIME_NOW <= TIME_NOW_internal;

end RTL_ARCH;

Making this chart was a lot
of work and was error prone.

56FY2005 S/W and CEH Standardization Conference rk

Simpler Example: Synchronizer
Schematic Version

57FY2005 S/W and CEH Standardization Conference rk

Gray Codes

“This is rookie stuff, so I can duck
out of this module, get some cookies,

and come back later, right?”

58FY2005 S/W and CEH Standardization Conference rk

Reflected Gray and Binary Codes
Binary Gray

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 0 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0

• Single output changes at a time
– Asynchronous sampling
– Permits asynchronous

combinational circuits to operate
in fundamental mode

– Potential for power savings

• Multiphase, multifrequency
clock generator

59FY2005 S/W and CEH Standardization Conference rk

VHDL Code for a 4-Bit Gray
Code Sequencer

Library IEEE;
Use IEEE.Std_Logic_1164.all;

Library Work;
Use Work.Gray_Types.All;

Library synplify;
Use synplify.attributes.all;

Entity Gray_Code Is

Port (Clock : In Std_Logic;
Reset_N : In Std_Logic;
Q : Out States);

End Entity Gray_Code;

Architecture RTL of Gray_Code Is
Attribute syn_netlist_hierarchy of RTL : architecture is false;

Signal IQ : States;
Attribute syn_encoding of IQ : signal is "gray";

Begin
GC: Process (Clock, Reset_N)

Begin
If (Reset_N = '0')
Then IQ <= s0;
Else If Rising_Edge (Clock)

Then Case IQ Is
When s0 => IQ <= s1;
When s1 => IQ <= s2;
When s2 => IQ <= s3;
When s3 => IQ <= s4;
When s4 => IQ <= s5;
When s5 => IQ <= s6;
When s6 => IQ <= s7;
When s7 => IQ <= s8;
When s8 => IQ <= s9;
When s9 => IQ <= s10;
When s10 => IQ <= s11;
When s11 => IQ <= s12;
When s12 => IQ <= s13;
When s13 => IQ <= s14;
When s14 => IQ <= s15;
When s15 => IQ <= s0;
When Others => IQ <= s0;
End Case;

End If;
End If;

End Process GC;

Q <= IQ;

End Architecture RTL;

Package Gray_Types Is

Type States Is (s0, s1, s2, s3,
s4, s5, s6, s7,
s8, s9, s10, s11,
s12, s13, s14, s15);

End Package Gray_Types;

60FY2005 S/W and CEH Standardization Conference rk

time = 9000.0ns Q=0000
time = 10000.0ns Q=1000
time = 11000.0ns Q=1100
time = 12000.0ns Q=0100
time = 13000.0ns Q=0110
time = 14000.0ns Q=1110
time = 15000.0ns Q=1010
time = 16000.0ns Q=0010
time = 17000.0ns Q=0011
time = 18000.0ns Q=1011
time = 19000.0ns Q=1111
time = 20000.0ns Q=0111
time = 21000.0ns Q=0101
time = 22000.0ns Q=1101
time = 23000.0ns Q=1001
time = 24000.0ns Q=0001
time = 25000.0ns Q=0000

Logic Simulation (1)
net -vsm "D:\designs\
sequencers\gray_code4.vsm"

clock clock 1 0
stepsize 500ns

vector q q_3 q_2 q_1 q_0
radix bin q
watch q

l reset_n
cycle 8

h reset_n
cycle 32

61FY2005 S/W and CEH Standardization Conference rk

Logic Simulation (2)

62FY2005 S/W and CEH Standardization Conference rk

Synthesizer Output for a Gray Code Sequencer

Logic Equations:
A: ~D2 ~S10+D2 ~S00
B: D0 ~S00 ~S10+D1 S00 ~S10+D1 ~S00 S10+D0 S00 S10
C: D0 ~S00 ~S10+D1 S00 ~S10+~D0 ~S00 S10+D0 S00 S10
D: D0 ~S01+D1 ~S00 S01+D0 S00
E: ~D0 ~S00 ~S10+D0 S00 ~S10+D0 ~S00 S10+~D0 S00 S10
F: D0 ~S00 ~S10 +~D0 S00 ~S10+~D0 ~S00 S10+D0 S00 S10

A
B

C

D

E

F

Outputs are not always driven by a flip-flop

63FY2005 S/W and CEH Standardization Conference rk

Synthesis Issues

• Synthesizer ignored the command to make the state
machine a Gray code and decided to make it a one-hot
machine. Had to “fiddle” with the VHDL compiler
settings for default FSM.
– Signal IQ : States;
– Attribute syn_encoding of IQ : signal is "gray";

• Output glitches!!!!!!!!

64FY2005 S/W and CEH Standardization Conference rk

FSM Gray Codes and HDL
The Saga Continues ...

We had another engineer (HDL specialist) run the
same Gray coded FSM through his version of
Synplicity and what did he get …

… Yes, as the cynic would expect, a different
answer!

65FY2005 S/W and CEH Standardization Conference rk

FSM Gray Codes and HDL
The Saga Continues ...

Replicating q_h.q[3], fanout 13 segments 2
Replicating q_h.q[2], fanout 13 segments 2
Replicating q_h.q[1], fanout 12 segments 2
Replicating q_h.q[0], fanout 12 segments 2

Added 0 Buffers
Added 4 Cells via replication

Resource Usage Report of Gray_Code

Sequential Cells: 8 of 1080 (1%)
dfc1b: 8

66FY2005 S/W and CEH Standardization Conference rk

4-Bit Gray Code
No Enumerations or FSM Optimization

Flip-flop outputs routed directly to outputs.

67FY2005 S/W and CEH Standardization Conference rk

Finite State Machines:
Lockup States

Home
Ping

One

Two

Three

Reset

First Sample State Machine

68FY2005 S/W and CEH Standardization Conference rk

Finite State Machines

• Lockup State
– A state or sequence of states outside the normal flow of

the FSM that do not lead back to a legal state.

• CAE Tools - Synthesizers
– Generates logic to implement a function, guided by the

user.
– Typically does not generate logic for either fault

detection or correction, important for military and
aerospace applications.

69FY2005 S/W and CEH Standardization Conference rk

Library IEEE; Use IEEE.Std_Logic_1164.All;
Entity Onehot_Simple_Act Is

Port (Clk : In Std_Logic;
Reset : In Std_Logic;
Ping : Out Std_Logic);

End Onehot_Simple_Act;

Library IEEE; Use IEEE.Std_Logic_1164.All;
Architecture Onehot_Simple_Act of Onehot_Simple_Act Is
Type StateType Is (Home, One, Two, Three);
Signal State : Statetype;

Begin
M: Process (Clk, Reset)

Begin
If (Reset = '1')

Then State <= Home;
Else If Rising_Edge (Clk)

Then Case State Is
When Home => State <= One;
When One => State <= Two;
When Two => State <= Three;
When Three => State <= Home;
End Case;

End If;
End If;

End Process M;
O: Process (State)

Begin
If (State = Home)

Then Ping <= '1';
Else Ping <= '0';
End If;

End Process O;
End Onehot_Simple_Act;

Enumeration

Next-state Logic
All states “covered”

70FY2005 S/W and CEH Standardization Conference rk

Lockup States
A Synthesized One-Hot Implementation

Typical ring counter with lockup states was synthesized.

Note: The same synthesizer with slightly different inputs,
versions, or constraints, can produce circuits with
significantly different topologies and properties.

71FY2005 S/W and CEH Standardization Conference rk

Lockup States
A “Safe” One-Hot Implementation

(Synthesized)

Reset flip-flops. This implementation uses 6 flip-flops.

72FY2005 S/W and CEH Standardization Conference rk

Lockup States
A “Safe” One-Hot Implementation

(Synthesized)

Reset flip-flops. Note second one is on falling edge
of the clock.

73FY2005 S/W and CEH Standardization Conference rk

FSM Recommendations (Abridged)
• Schematics for the Top Level of the Hierarchy:

– Graphical representation shows parallelism and pipelining.
– Structural VHDL is similar (but worse!) then the GOTO in programming languages. In a

programming language, targets of GOTOs are often easy to see graphically.
• HDL for Components

– Components should normally be of the types that people can intuitively understand. VHDL
code works well for many of these types, allowing reuse, customization of size, etc.

• Complex State Machines
– VHDL also works well for expressing some complex state machines (CASE).
– Ironically, for some simple sequential circuits, VHDL is ill-suited for the task.

• Design for Reviews
– Designs that are too difficult to be reviewed will either not be reviewed well or at all.

• Control Your Design
• Monitor Your Design

– Listing show number of f-fs, types, replication, state assignments, elimination of TMR, etc..
• Verify your design thoroughly.

– Do not rely solely on simulation!!!!!
• Look and think.

– Do not rely on these tools to do your thinking for you.

74FY2005 S/W and CEH Standardization Conference rk

Complexity, System on a Chip, and
Intellectual Property Issues

HDL allows designers to leave the confines of rigidly defined parts.

However, when constructing new components one shouldn't stray too far
from the components that we all are familiar with from our board design
days. There's a reason why those parts are the ones the manufacturers
provided for many decades.

In the same way that ANDs, ORs, and NOTs constitute a complete set
for creating logic, higher level logic is made of things like muxes,
counters, and decoders. While we may no longer be limited to choosing
between 4-1, 8-1, and 16-1 muxes, we're still using muxes, everyone
understands how they work, and there's probably some cosmic reason
why the common MSI structures are the ones that have endured.

75FY2005 S/W and CEH Standardization Conference rk

Bootloader (8KB)
FPGA LUT

HDLC Controller (4CH)
SSTL IP Core

386EX Processor
ESA LEON IP Core

CAN Peripheral
ESA Hurricane IP Core

CAN TTC Node
ESA Hurricane IP Core

Program Memory (4MB)
3D+ Stackable SRAM

10BASE-2 Network
Bus LVDS

EDAC
SSTL IP Core

Bulk Data Storage (128MB)
IBM Microdrive

387SL CoProcessor
SSTL Cordic IP Core

GLUE Logic
FPGA

SoC Translation
OBC386 SoC

Reference Model

A System-on-a-chip for Small Satellite Data Processing and Control
T. Vladimirova, H. Tiggeler, D. Zheng: Surrey Space Centre
2000 MAPLD International Conference

76FY2005 S/W and CEH Standardization Conference rk

A System-on-a-chip for Small Satellite Data Processing and Control
T. Vladimirova, H. Tiggeler, D. Zheng: Surrey Space Centre
2000 MAPLD International Conference

SSTL Core
ESA Core

Debug

CAN Network >100Mbps

170Mbyte
Microdrive

TX

TCSP1M*64
SRAM

CAN BUS LVDS

RX2RX1RX0

Linear
Regulator

POR

SoC Architecture

+3.3V

EDAC
DECDED

ROM LUT
Bootstrap

AMBA AHB

CAN
Interface

AMBA AHB

LEON Sparc V8 CORDIC
Coprocessor

AMBA AHB

AMBA AHB

HDLC TX
Controller

AMBA AHB

HDLC RX
Controller

FIFO

AMBA AHB

HDLC RX
Controller

FIFO

AMBA AHB

HDLC RX
Controller

FIFO

System Bus

CF+ I/F
True IDE

FIFO

Parallel Port
Interface

UART

AMBA AHB

PIO

FIFO

AMBA AHB

+2.5V +3.3V

CLK CLK CLK CLK

77FY2005 S/W and CEH Standardization Conference rk

Am29CPL154 Features
• 512 x 36-bit Program ROM
• 8 test inputs, optionally registered
• 16 user outputs
• 28 instructions including conditional

branching, looping, subroutine call,
multiway branching

• 17-deep, 9-bit wide stack

“Reconfigurable, System-on-Chip, High-Speed Data Processing
and Data Handling Electronics”
Igor Kleyner
1999 MAPLD International Conference
Laurel, Maryland

78FY2005 S/W and CEH Standardization Conference rk

29KPL154 Capabilities
• Stack depth selectable from 0 to 17
• Program Memory internal, external or a

combination
• Contents of Program optimized by

Kompiler as ROM block
• Instruction Encoding Optimized by

replacing unused fields with “don’t_cares”
• Program contents analyzed by Kompiler,

only used instructions and test conditions
implemented

• 16 additional test inputs and 16 extra user
outputs can be used

PC

Stack

Count Register

GOTO

Test In

Data Out

Optimization Effort Concentrated In
Darker Shaded Blocks

“Reconfigurable, System-on-Chip, High-Speed Data Processing
and Data Handling Electronics”
Igor Kleyner
1999 MAPLD International Conference
Laurel, Maryland

79FY2005 S/W and CEH Standardization Conference rk

“Off the Shelf” IP: Some Issues

• About the third party certification:
– Was not tested at the frequency being sold at.

• Code to support higher frequency was written after the certification.

– Unknown whether the Verilog of VHDL version was tested.

• “Difficult” to run tests omitted.
• “Holes” in test bench.
• Finite state machines not analyzed for lockup states
• Logic design not analyzed for flip-flop replication.

A recent look “under the hood” at some IP that is sold into
the high-reliability space market showed:

80FY2005 S/W and CEH Standardization Conference rk

CAE Tools and Models

81FY2005 S/W and CEH Standardization Conference rk

CAE Tool Assessment and Qualification
(Mom and Apple Pie)

• Tools, both hardware and software, will normally be used during hardware
design and verification.

– When design tools are used to generate the hardware item or the hardware
design, an error in the tool could introduce an error in the hardware item.

– When verification tools are used to verify the hardware item, an error in the
tool may cause the tool to fail to detect an error in the hardware item or
hardware design.

• Prior to the use of a tool, a tool assessment should be performed.
• The purpose of tool assessment and qualification is to ensure that the tool is

capable of performing the particular design or verification activity to an
acceptable level of confidence for which the tool will be used.

From DO-254

82FY2005 S/W and CEH Standardization Conference rk

CAE Tool Assessment and Qualification

• Does the Tool have Relevant History? When it is
possible to show that the tool has been previously
used and has been found to produce acceptable
results, then no further assessment is necessary.

From DO-254

How is an extrapolation of such a complex
software product that is not open to inspection
justified in a safety-critical application?

Isn’t this just the Russian Roulette Theory of
Aircraft Design?

83FY2005 S/W and CEH Standardization Conference rk

CAE Tool Assessment and Qualification

• “Basic Tool Qualification. Establish and execute
a plan to confirm that the tool produces correct
outputs for its intended application using analysis
or testing. The tool’s user guide or other
description of the tool’s function and its use may
be used to generate requirements.”

From DO-254

1. Does the user’s guide/tool description fully and accurately
define the tool for all cases?

2. Do vendors guarantee their tool’s fidelity?

84FY2005 S/W and CEH Standardization Conference rk

A Logic Synthesizer: Manufacturer’s View

Xxxxxxxxxx warrants that the program portion of the SOFTWARE will
perform substantially in accordance with the accompanying
documentation for a period of 90 days from the date of receipt.

IN NO EVENT SHALL XXXXXXXXXX OR ITS LICENSORS OR THEIR
AGENTS BE LIABLE FOR ANY INDIRECT, SPECIAL,
CONSEQUENTIAL OR INCIDENTAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
BUSINESS PROFITS, BUSINESS INTERRUPTIONS, LOSS OF
BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN
IF XXXXXXXXXX AND/OR ITS LICENSORS HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

85FY2005 S/W and CEH Standardization Conference rk

A Simulator: Manufacturer’s View

5. LIMITED WARRANTY.

5.1. Xxxxxx Xxxxxxxx warrants that during the warranty period Software,
when properly installed, will substantially conform to the functional
specifications set forth in the applicable user manual.

Xxxxxx Xxxxxxxx does not warrant that Software will meet your
requirements or that operation of Software will be uninterrupted or
error free.

XXXXXX XXXXXXXX AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY.

86FY2005 S/W and CEH Standardization Conference rk

Safety Critical Applications: Manufacturer’s View

7. LIFE ENDANGERING ACTIVITIES. NEITHER XXXXXX
XXXXXXXX NOR ITS LICENSORS SHALL BE LIABLE FOR ANY
DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE
OF SOFTWARE IN ANY APPLICATION WHERE THE FAILURE OR
INACCURACY OF THE SOFTWARE MIGHT RESULT IN DEATH
OR PERSONAL INJURY.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD
HARMLESS XXXXXX XXXXXXXX AND ITS LICENSORS FROM
ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY,
INCLUDING ATTORNEYS' FEES, ARISING OUT OF OR IN
CONNECTION WITH YOUR USE OF SOFTWARE AS DESCRIBED IN
SECTION 7.

Is proper qualification practical with complex CAE software?

87FY2005 S/W and CEH Standardization Conference rk

Xxxxxxxx makes no warranty of its IBIS Model Software, expressed, implied, or statutory,
including but not limited to warranties of merchantability and fitness for a particular purpose.

Signal Integrity

[IBIS ver] 3.2
[File name] XXXXX.ibs
[File Rev] 1.1
[Date] March 1, 2004
[Disclaimer] All V/I data was verified for accuracy against bench measurements.
The measurements were done on typical production parts.
3.3V PCI model has not been verified against silicon measurements. Please check
Xxxxx IBIS page for updates at http://www.xxxxx.com/

[IBIS ver] 2.1
[File name] XXXXXXX.ibs
[File Rev] 2.x
[Date] April 9, 2003
[Source] From Lab mesurement at Xxxxxxxx.
[Disclaimer] This information is for modeling purposes only, and is not guaranteed.

88FY2005 S/W and CEH Standardization Conference rk

Timing Analysis

• Minimum delay numbers calculated by the
timing analysis tools are not guaranteed. They
are not bound and actuals may be less then the
reported values.

• This is true for [static timing analyzer results] as
well as files containing extracted delays such as .sdf
files.

• …

The findings below are accurate at the time of this
posting and is the manufacturer's current guidance.

89FY2005 S/W and CEH Standardization Conference rk

When Should You and When Should You Not
Use A Hardware Description Language (HDL)?

• Critical Timing Circuit in a Scientific Instrument
– Timing unit with < 400 ps resolution

• Controller for a Crane in an Industrial Environment.
– Moving a Space Shuttle Orbiter

• Initiation Circuit for Explosives and Rockets
– Warhead Fuzes
– Self-Destruct Charges on a Solid Rocket Booster (manned)
– Rocket Motor On Fighter Aircraft Missile

Some Typical Applications

DO-254: “The guidance of this document is applicable for
design assurance for designs using an HDL representation.”

90FY2005 S/W and CEH Standardization Conference rk

Critical Timing Circuit in a Scientific Instrument
Timing unit with < 400 ps resolution

• Don’t have to like it, you just have to do it.
• Requires hand placement of many critical modules

– Minimize Delays
– Match Delays

• Aid in calibration
• Try to cancel temperature coefficients for tPD

– Assume on order of 100 modules must be hand placed.

• Schematic:
– Straightforward to identify modules and place them. Names in the

design match the names in the back end tool.

• VHDL:
– Munges names, names constant from run to run? Effects on timing

constraint/analysis tools?

91FY2005 S/W and CEH Standardization Conference rk

A “Simple” Shift Register
Library IEEE;

Use IEEE.Std_Logic_1164.All;

Entity Skew Is
Port (Clk : In Std_Logic;

D : In Std_Logic;
Q : Out Std_Logic);

End Skew;

Library IEEE;
Use IEEE.Std_Logic_1164.All;

Architecture Skew of Skew Is
Signal ShiftReg : Std_Logic_Vector (31 DownTo 0);
Begin

P: Process (Clk)
Begin
If Rising_Edge (Clk)

Then Q <= ShiftReg(0);
ShiftReg (30 DownTo 0) <= ShiftReg (31 DownTo 1);
ShiftReg (31) <= D;

End If;
End Process P;

End Skew;

92FY2005 S/W and CEH Standardization Conference rk

Clock Skew - From VHDL
Synthesized Results

Results will depend on coding, directives and attributes, synthesizer, and
synthesizer revision.

Here we see that the logic synthesizer generated a poor circuit.

93FY2005 S/W and CEH Standardization Conference rk

A Schematic Approach to Skew-Tolerant Circuits

Opposite edge clocking technique

94FY2005 S/W and CEH Standardization Conference rk

A VHDL Approach to Skew Tolerant Circuits
(Simplified Excerpt)

DTCountIntNEProc:
Process (Clock, Reset)
Begin
if Reset = ActiveReset then

DTCountIntNE <= "00000000";
elsif Falling_Edge (Clock) then

if ReadPulse = '1' then
DTCountIntNE <= DTCountInt + 1;
end if;

end if;
End Process DTCountIntNEProc;

DTCountIntProc:
Process (Clock)
Begin
if Rising_Edge (Clock) then

DTCountInt <= DTCountIntNE;
end if;

End Process DTCountIntProc;

Opposite edge clocking technique

95FY2005 S/W and CEH Standardization Conference rk

VHDL Code and Synthesizer Analysis
Case Study - Hardened Clock Generator

-- Divide 25 MHz (40 ns) clock by 4
-- to produce 6.25 MHz clock (160 ns)
-- This clock should be placed on
-- an internal global buffer

clkint1: clkint
Port Map (A => clk_div_cnt(1),

Y => clk_div4);

clkdiv: Process (reset_n, clk)
Begin
If reset_n = '0' Then

clk_div_cnt <= "00";
Elsif clk = '1' And clk'EVENT Then

clk_div_cnt <= clk_div_cnt + 1;
End If;

End Process clkdiv;

96FY2005 S/W and CEH Standardization Conference rk

VHDL Code and Synthesizer Analysis
Case Study - Hardened Clock Generator

Most significant bit of the counter. 3 C-Cells are used for the voter.
This circuit contains a hazard.

25MHz

CLK_DIV4

Generated automatically
from VHDL output.

97FY2005 S/W and CEH Standardization Conference rk

Language and Complexity
This is a simple example of language complexity

-- Age the debounced rxd signal to look for edges
...

process (reset, sys_clk)
begin

if reset = '1' then
debounced_rx_last <= '0';
debounced_rx_change <= '0';

elsif rising_edge(sys_clk) then
debounced_rx_last <= debounced_rx;
if debounced_rx_last /= debounced_rx then

debounced_rx_change <= '1';
else

debounced_rx_change <= '0';
end if;

end if;
end process;

98FY2005 S/W and CEH Standardization Conference rk

WYSIWYG
Switching from a schematic based to a synthesis
based design involves several methodology changes.
Some old tools are no longer needed while other
newer tools must be learned. A gate change is easier
to do using a schematic. An equivalent change made
by an HDL and then synthesized may produce other
changes since the correspondence between the
HDL and netlist produced as a result of synthesis
can be obscure.

“ Design, Test, and Certification Issues for Complex Integrated Circuits,” DOT/FAA/AR 95/31, L.
Harrison and B. Landell, August 1996.

99FY2005 S/W and CEH Standardization Conference rk

How Do You Verify Circuit
Correctness for Safety Critical

Applications?

100FY2005 S/W and CEH Standardization Conference rk

Conclusions

101FY2005 S/W and CEH Standardization Conference rk

3.2 Logic Design Pitfalls

“ Design, Test, and Certification Issues for Complex Integrated Circuits,” DOT/FAA/AR 95/31, L.
Harrison and B. Landell, August 1996.

The use of tools and higher levels of design abstraction, the pressures of
rapid time to market (TTM), inexperienced designers, and other factors
often contribute to designs of inferior quality. With the availability of
more powerful design tools, the actual logic implementations are
further removed from the designer's critical inspection. Designs often
use libraries of functions which are supplied or purchased along with the
tools. Both the tools and design libraries may contain design flaws that can
escape the notice of designers. Higher levels of abstraction mean that those
who are not as familiar with digital design techniques and practices
can now perform design functions. What can suffer is the ability of the
designer to verify that the circuit implemented by the tool suite is correct.

Those tasked with design verification should ensure that design pitfalls are
avoided and that good design techniques are applied consistently.

102FY2005 S/W and CEH Standardization Conference rk

Conclusions: General
• Barto's Law: Every circuit is

considered guilty until proven
innocent.

• Simple → Complex: HDL’s can make
certain circuit structures more complex
to design and verify.
– Many vendors are now including

schematic capability in their tool sets.

103FY2005 S/W and CEH Standardization Conference rk

Conclusions: Simple and Complex Hardware

• Based on DO-254 Definitions:
– “Simple Hardware” Is Not Easy
– “Complex Hardware” Does Not Belong In Any Safety

Critical Applications

• Size ≠ Complexity

• It’s the engineer’s job to manage increased design
size and keep the complexity at practical levels.
This is called subsystem engineering.

104FY2005 S/W and CEH Standardization Conference rk

Conclusions: Simple and Complex Hardware

"These are highly complicated pieces of equipment almost as
complicated as living organisms. In some cases, they've been
designed by other computers. We don't know exactly how
they work."
-- Scientist in Michael Crichton's 1973 movie, Westworld

	DO-254: Introduction
	An Example or Two to Get Things Started
	Basic Digital Logic and Programmable Devices
	Basic Digital Operations
	Logic Functions
	Universal Logic Gate�NOR Function
	Universal Logic Gate
	Universal Logic Gate� Look up table (LUT)
	What Is A Gate Array?
	What Is An Antifuse-Based FPGA?�Antifuse-FPGA Architecture
	What Is An Antifuse-Based FPGA?�Antifuse-FPGA Architecture
	Virtex II XC2V1000 SEU Data�Configuration Bits
	Virtex II 2V6000 SEU Data�Atmospheric Neutrons
	Module Design of ��PALs and FPGAs
	Programmable Logic Components
	PAL Architecture
	Act 2 Logic Modules
	XC4000 Series CLB�Simplified CLB - Carry Logic Not Shown
	Five Generations of Actel Space Flight FPGAs
	Some Definitions
	Definitions
	Definitions
	Is Hardware Software?
	Finite State Machine: Introduction
	The Null Hypothesis:
	HDL Rationale
	A Flight VHDL Example (1)
	A Flight VHDL Example (2)
	A Flight VHDL Example (3)
	A Flight VHDL Example (4)
	“Computer Science World Mourning the Loss of Two of Its Trailblazers”
	Think …
	Finite State Machine Analysis
	Ex: Master Sequencer, Schematic
	Master Sequencer Example�VHDL Implementation1
	Master Sequencer Example�VHDL Implementation: Draw Nets
	Master Sequencer Example�Schematic Analysis: Inputs and Outputs
	Master Sequencer Example�Schematic Analysis: Connectivity
	Master Sequencer Example�Symbol Analysis: Inputs and Outputs
	Master Sequencer Example�VHDL Analysis: Inputs and Outputs
	Master Sequencer Example�VHDL Analysis: Connectivity
	Simpler Example: Synchronizer�Schematic Version
	Gray Codes
	Reflected Gray and Binary Codes
	VHDL Code for a 4-Bit Gray Code Sequencer
	Logic Simulation (1)
	Logic Simulation (2)
	Synthesizer Output for a Gray Code Sequencer
	Synthesis Issues
	FSM Gray Codes and HDL�The Saga Continues ...
	FSM Gray Codes and HDL�The Saga Continues ...
	4-Bit Gray Code�No Enumerations or FSM Optimization
	Finite State Machines:��Lockup States
	Finite State Machines
	Lockup States�A Synthesized One-Hot Implementation
	Lockup States�A “Safe” One-Hot Implementation�(Synthesized)
	Lockup States�A “Safe” One-Hot Implementation�(Synthesized)
	FSM Recommendations (Abridged)
	Complexity, System on a Chip, and Intellectual Property Issues
	Am29CPL154 Features
	29KPL154 Capabilities
	“Off the Shelf” IP: Some Issues
	CAE Tools and Models
	CAE Tool Assessment and Qualification�(Mom and Apple Pie)
	CAE Tool Assessment and Qualification
	CAE Tool Assessment and Qualification
	A Logic Synthesizer: Manufacturer’s View
	A Simulator: Manufacturer’s View
	Safety Critical Applications: Manufacturer’s View
	Xxxxxxxx makes no warranty of its IBIS Model Software, expressed, implied, or statutory, including but not limited to warranti
	Timing Analysis
	When Should You and When Should You Not Use A Hardware Description Language (HDL)?
	Critical Timing Circuit in a Scientific Instrument�Timing unit with < 400 ps resolution
	A “Simple” Shift Register
	Clock Skew - From VHDL�Synthesized Results
	A Schematic Approach to Skew-Tolerant Circuits
	A VHDL Approach to Skew Tolerant Circuits�(Simplified Excerpt)
	VHDL Code and Synthesizer Analysis�Case Study - Hardened Clock Generator
	VHDL Code and Synthesizer Analysis�Case Study - Hardened Clock Generator
	Language and Complexity�This is a simple example of language complexity
	How Do You Verify Circuit Correctness for Safety Critical Applications?
	Conclusions
	Conclusions: General
	Conclusions: Simple and Complex Hardware
	Conclusions: Simple and Complex Hardware

